学科吧课件尊敬的各位老师:大家好!今天我说课的内容来自北师大版实验教材八年级下册的第四章第六节《探索相似三角形的条件》第一课时。下面我将从“教材分析”、“教学方法”、“学法指导”、“教学过程”、“教学评价”等五部分来说明我对这节课的教学设计。一、教材分析:(一)教材的地位和作用:古人如何测量金字塔的高度?工人师傅如何测量钢管内径?透镜成像原理如何解释?这些问题的解决首先都要依靠相似三角形的判定。随着科技发展,它在工农业生产、土木建筑、测量绘图和日常生活中的应用越来越广泛。在学习了相似三角形的基本概念和基本性质等知识后,“探索相似三角形的条件”就呼之欲出了。它既是前面知识的延伸和全等三角形的拓展,又是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,尤其是,对于图形相似方法的判定,本套教材是以三角形的相似判定为根基的,因此是本章的重点之一。本课又是判定三角形相似的起始课,在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。(二)教学目标:根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我从“三维”角度确定本节课的教学目标:1.知识目标:经历“直观感觉――动手感知――理性思维――应用拓展”的活动过程,探索两个三角形相似的条件,并会用相似三角形的判定方法(一)来判断及计算。2.能力目标:通过运用三角形相似的条件解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力。3.情感目标:在活动中,开发、培养学生的发散性思维,进一步发展学生的探究、合作交流意识,以及动手、动脑和谐一致的习惯。(三)教学重点与难点这节课的重点是三角形相似的判定定理1探索与应用。我将充分运用多媒体教学手段,设置问题、让学生展开实验、讨论、探究,突出重点三角形相似的判定方法1在运用时,如何找准相等的两组对应角是一个难点,因此,我注重例题的发展性作用,层层深入,逐步突破难点。二、教学方法的选择与应用根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用“引探式”的教学法。教师着眼于引导,学生着眼于探索。意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过学习伙伴的讨论来深化对知识的理解。其主要流程可以分为“直觉观察——实验探究——讨论交流——应用拓展”本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。三、学法指导《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现这一要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,逐步培养学生学会观察、类比、探索、猜想、论证等四、教学过程:根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
本例及想一想1意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。 想一想2为下面的变式埋下伏笔。 变式一用几何图形运动变化的观点揭示常见相似三角形的“基本图形”,较好地提高了学生识图、作图能力 这里安排四人小组合作学习,共同分析,交流多样化的答案,使课堂气氛达到高潮。既进一步强化了学生对判定定理1的认识,又可以训练学生的发散思维,培养灵活运用知识的能力,增强学生的创新意识和创新能力。变式二紧承变式一,将刚刚得到的几种相似三角形的“基本图形”和谐统一起来。并且通过设置问题串,突破了找相等角的难点。为学生提供成功机会。激发学生学习乐趣。 1、如图,点B、D和C、E分别在∠A的两边上,BE⊥AC于E点,CD⊥AB于D点,BE和CD相交于点F,图中有几对相似三角形,并任你选一对说明理由。学生思考、练习,相互评价、矫正。使学生加深对判定方法(一)的理解。 4、试一试,解释生活故事激趣《拿破仑测莱茵河宽度》1805年,拿破仑率领大军与德俄联军在莱茵河作战。当时德俄联军在北岸步阵,法军在南岸,中间隔着很宽的莱茵河。法军要开炮轰击德俄联军,必须知道河的宽度。拿破仑为此大伤脑筋。站在南岸远望德俄阵地。忽然,他观察到对面岸边的一个标志O,于是他想出了一个测量河宽的办法。他在自己的岸边选点A、B、D,使得AB⊥AO,DB⊥AB,然后确定DO和AB的交点C。然后测得AC=120米。CB=60米,BD=250米,你能帮助他算出莱茵河的宽度吗? 与课后练习3属同一数学模型,但此问题情境更能激发学生的兴趣。 五、归纳总结,深化目标设问:“通过这节课的学习有什么收获?”同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳。1.判定三角形相似的条件12.几种相似三角形的“基本图形”3.应用“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等. 让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。 五、评价分析虽说教无定法,但启发性原则是永恒的。在教师的启发下,正如新《数学课程标准》所要求的,让学生成为行为主体“动手实践、自主探索、合作交流”。以上述思想为出发点,就本节课而言,整个课堂教学设计体现了活动性、开放性、探究性、合作性、生成性。教师的讲始终起到启发、点拨、纠偏、示范的作用。在教师的启发引导下,学生积极参与到课堂教学中来,动手动口、动脑相结合,使他们“听”有所思,“学”有所获,本设计同时还注重发展了习题的作用,加强发散思维的培养。较好地体现了“数学教学主要是数学活动的教学”这一教育思想。文章来源六、作业布置、检测反馈。必做题:作业本选做题:A层:习题4.7第1、2题。B层:提高题 让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。体现分层教学的原则。
学科吧课件
