好好学习,天天向上,学科吧欢迎您!
当前位置:首页 >> 反思 >> 说课稿 内容页

八年级数学勾股定理教学设计

文章来源学科吧www.
16fw.com

八年级数学“勾股定理”教学设计

备课时间:开学前第一周上课时间:第三周

课题:1、3蚂蚁怎样走最近

教学目标

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力.

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣.

(2)在解决实际问题的过程中,体验数学学习的实用性.

教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学准备:多媒体课件

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

如图:在一个圆柱石凳上,若小明在吃东西时留下了一点

食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于

是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.

学生汇总了四种方案:

(1)   (2)(

学生很容易算出:情形(1)中A→B的路线长为:AA’+d,

情形(2)中A→B的路线长为:AA’+πd/2

所以情形(1)的路线比情形(2)要短.

学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

如图:

(1)中A→B的路线长为:AA’+d;

(2)中A→B的路线长为:AA’+A’B>AB;

(3)中A→B的路线长为:AO+OB>AB;

(4)中A→B的路线长为:AB.

得出结论:利用展开图中两点之间,线段最短解决问题.

在这个环节中,可让学生沿母线剪开圆柱体,具体观察.

接下来后提问:怎样计算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,π取3,则.

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

第四环节:巩固练习(10分钟,学生独立完成)

1.甲、乙两位探险者到沙漠进行探险,

某日早晨8:00甲先出发,他以6km/h的

速度向正东行走,1小时后乙出发,他以

5km/h的速度向正北行走.上午10:00,

甲、乙两人相距多远?

2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走

最近?并求出最近距离.

3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近

边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为

0.5米,问这根铁棒有多长?

第五环节课堂小结(3分钟,师生问答)

内容:

1、如何利用勾股定理及逆定理解决最短路程问题?

第六环节:布置作业(2分钟,学生分别记录)

内容:

作业:1.课本习题1.5第1,2,3题.

要求:A组(学优生):1、2、3

B组(中等生):1、2

C组(后三分之一生):1

板书设计:

教学反思

文章来源学科吧www.
16fw.com

TAG标签: